High temperature phase transitions in rare-earth element niobates $R_3NbO_7^{1}$

A.N. Klimenko^a, Yu.S. Kozlov^b, V.S. Sergeev^a and E.A. Pastukhov^b

^a NSTS Science Centre, 64 Novocheryomushkinskaya St., 117418 Moscow (Russian Federation)

^b Institute of Metallurgy, Ural Division of the Russian Academy of Sciences, 620219 Sverdlovsk GSP-813 (Russian Federation)

(Received 10 September 1991; in revised form 28 January 1992)

Abstract

Refractory compounds based on oxides of rare-earth metals (REMs) and niobium are promising materials for use in different areas of modern engineering. However, the body of published data on complex physicochemical studies of the aforementioned phases is extremely restricted, especially for the high temperature range. The purpose of the present study was to probe the thermophysical properties of R_3NbO_7 (R = Y, La-Lu) at $T \ge 298$ K and to identify the phase transitions that occur.

EXPERIMENTAL

The polycrystalline REM niobates being investigated were synthesized ceramically with the use of R_2O_3 (>99.9%) and Nb₂O₅ (of high purity). To this end, compacted specimens of stoichiometric composition were sintered in air in two stages (stage I: 1400 K, 200 h; stage II: 1670 K, 50 h), the specimens being subjected to an intermediate grinding. The compounds produced were identified by X-ray phase analysis (XPA); this was performed on a Philips PW-1700 powder diffractometer (The Netherlands). We employed a high temperature accessory, which enabled us to investigate the crystal structure of the substances over the entire range of temperatures studied. The results obtained gave evidence of the synthesized REM niobates being homogeneous. A calculation of the unit cell parameters (Table 1) indicated that the niobates of Y and Dy–Lu possess a cubic crystal system (the crystal cell parameter for these compounds is doubled on the assumption that a type I Bravais lattice exists), whereas

Correspondence to: Yu.S. Kozlov, Institute of Metallurgy, Ural Division of the Russian Academy of Sciences, 620219 Sverdlovsk GSP-813, Russian Federation.

¹Presented at the 11th IUPAC Symposium on Chemical Thermodynamics, Como, Italy, 26–31 August 1990.

REM	а	b	с	V			
Y	10.488			1153.66			
La	11.166	7.624	7.752	659.95			
Pr	10.995	7.508	7.660	632.33			
Nd	10.904	7.516	7.626	624.99			
Sm	10.723	7.534	7.615	615.23			
Eu	10.663	7.513	7.578	607.08			
Gd	10.655	7.507	7.550	603.90			
Tb	10.535	7.522	7.574	600.24			
Dy	10.548			1173.64			
Но	10.519			1163.95			
Er	10.471			1148.00			
Tm	10.420			1131.37			
Yb	10.395			1123.38			
Lu	10.354			1110.00			
				1110100			

Parameters a, b,	c (Å) an	d unit cel	l volumes	$V(Å^3)$	for REM	niobates	R ₃ NbO ₇
------------------	----------	------------	-----------	----------	---------	----------	---------------------------------

those of La-Tb had a rhombic crystal system. The values that we have obtained give a good fit to the data provided in ref. 1.

The Nd₃NbO₇ single crystals to be studied by X-ray structure analysis were produced by dissolution in the melt. For this purpose, a mixture of the starting oxides Nd₂O₃ and Nb₂O₅ was ground, and to this chemically pure SrCO₃ and SrCl₂ \cdot 6H₂O were added. The blend thus prepared was heated to 1700 K in a platinum crucible and, after protracted (50 h) isothermal soaking, was cooled at a rate of 10 K h⁻¹. The synthesized crystals were washed in diluted chloric acid in order to remove the solvent.

An X-ray electron probe analysis showed the elemental composition of the synthesized crystals to correspond to the formation of the compound Nd_3NbO_7 .

The crystal structure of Nd_3NbO_7 at room temperature and at elevated temperatures was identified with an Enraf-Nonius SAD-4 automatic diffractometer. All the requisite calculations were performed with a computer, using a package of SDP programs.

The heat capacity of R_3NbO_7 niobates was studied in air by the methods of continuous stepwise ($\Delta T = 5 \text{ K}$) programming of temperature and mixing in DSK-111 and NT-1500 differential calorimeters (Setaram, France). Instrument calibration was performed by a reference measurement of the heat capacity and ($H_T^{\oplus} - H_{298,15}^{\oplus}$) of certified α -Al₂O₃ under strictly identical conditions. In greater detail, the procedure of conducting thermochemical experiments and the statistical processing of results are described in refs. 2 and 3.

The thermal expansion of polycrystalline specimens of REM niobates

TABLE 1

was investigated on a quartz dilatometer in a helium atmosphere at a heating rate of 30 K min^{-1} . Computer processing of experimental results according to a program developed by us, which executes the zero correction of dilatometric curves and allows for the intrinsic dilatometer trend for the heating rate chosen, permitted the value of the temperature coefficient of linear expansion (TCLE) to be determined with an error that did not exceed 1%.

DISCUSSION

In Table 2 we report the coefficients of the polynomial dependences $C_{\rho} = f(T)$ for REM niobates. R₃NbO₇ (with R = La, Pr, Nd, Gd or Sm) exhibited regions where the heat capacities varied anomalously.

For La, Pr, Nd and Gd niobates the values of the excess phase transformation enthalpies did not exceed $0.6 \text{ kJ} \text{ mol}^{-1}$ (see Fig. 1). The temperature dependences of the TCLE and relative elongation are given in Fig. 2 and Table 3. Dilatometric results confirmed the occurrence of phase transitions in the above niobates and indicated that the relative elongation in the niobates suffered no discontinuous change at the

TABLE 2

Coefficients of temperature dependences of heat capacity for REM niobates, $C_p = a + bT + cT^{-2}$ (J mol⁻¹ K⁻¹)

R	а	$b \times 10^3$	$-c \times 10^{-5}$	Error (%)	Interval (K)
Y	252.88	34.98	34.19	0.5	298.15-1100
La	136.15	333.84		0.3	298.15-368
	313.68	-148.57		0.2	368-400
	237.22	56.69	15.44	0.9	400-1800
Pr	154.60	320.69		0.2	298.15-370
	509.81	-639.33		0.2	370-385
	250.14	60.51	14.47	0.5	385-1100
Nd	170.09	247.54		0.4	298.15-442
	374.07	-213.95		0.3	441488
	282.90	24.30	59.57	0.3	488-1100
Sm	273.73	45.32	41.94	0.5	298.15-1000
Eu	263.00	64.07	26.75	0.4	298.15-1100
Gd	109.71	428.57		0.2	298.15332
	537.78	-860.77		0.1	332-348
	262.34	22.12	38.11	0.9	348-1800
ТЬ	245.67	67.73	19.90	0.4	298.15-1100
Dy	261.21	40.33	19.01	0.5	298.15-1100
Ho	256.21	41.28	14.56	0.5	298.15-1100
Er	250.78	38.52	26.00	0.6	298.15-1100
Tm	262.19	36.53	24.50	0.5	298.15-1100
Yb	279.12	28.22	37.62	0.6	298.15-1100
Lu	262.59	29.31	45.50	0.4	298.15-800

Fig. 1. Temperature dependence of the heat capacity of Nb₃NbO₇.

transformation temperatures. Thus, the character of variation of the geometric dimensions of R_3NbO_7 (R = La, Pr, Gd, Nd) specimens and the trend of the temperature dependences of C_p indicate the presence of λ -type transformations in these compounds.

In Fig. 3 we show the temperature dependences of heat capacity and TCLE for Sm_3NbO_7 in the region of the phase transition. The results obtained suggest that the value for the transformation of this compound ($\approx 2.04 \text{ kJ mol}^{-1}$) greatly exceeds the above-cited values for other REM niobates. Besides, at the phase transition temperature—1048 K—the TCLE and the relative elongation of Sm_3NbO_7 undergo a sudden change.

Fig. 2. Temperature dependence of the TCLE for REM niobates R_3NbO_7 , where R = Pr Curve 1, La Curve 2, Gd Curve 3, Nd Curve 4.

the temperature dependence of relative elongation for R_3NbO_7 phases									
Compund	Relative density	$A \times 10^4$	$B imes 10^{6}$	$C \times 10^{9}$	Interval (K)				
La ₃ NbO ₇	79.2	0.8940	6.9846	3.1744	293.15-1250				
Pr ₃ NbO ₇	90.6	1.2694	6.3019	2.2471	293.15-1250				
Nd ₃ NbO ₇	82.6	1.2526	6.4205	-7.8741	293.15-573				
-		9.9913	8.8367	1.4597	573-1250				
Sm ₃ NbO ₇	79.6	1.9927	9.9338	1.4845	293.15-800				
Gd ₃ NbO ₇	57.4	6.8590	9.7938	0.6519	373-1150				
Tb ₃ NbO ₇	60.3	1.9100	9.5200	0.7700	293.15-1250				
Dy ₃ NbO ₇	59.8	1.6532	8.2263	1.9809	293.15-1250				
Ho ₃ NbO ₇	61.4	1.8200	9.0600	1.1900	293.15-1250				
Er ₃ NbO ₇	56.2	2.0446	10.217	0.2917	293.15-1250				
Yb ₃ NbO ₇	58.4	2.3700	9.9700	0.9500	293.15-1250				

TABLE 3

Values of polynomial coefficients $\Delta l/l = (A + B)(T - 273.15) + C(T - 273.15)^2$, describing the temperature dependence of relative elongation for R₃NbO₇ phases

We carried out XPA of high and low temperature modifications of La, Pr, Nd, Gd and Sm niobates. For R_3NbO_7 (R = La, Pr, Nd, Gd), X-ray diffraction patterns indicated preservation of the crystal system and the absence of an appreciable variation of the crystal lattice parameters caused by the occurrence of phase transitions. This is a demonstration that the anomalies in the physicochemical properties of REM niobates arise possibly from the displacement of individual atoms in the crystal cells.

Table 4 summarizes the values of the parameters and unit cell volume

Fig. 3. Temperature dependence of the heat capacity, relative elongation and TCLE for Sm_3NbO_7 in the region of the phase transition.

TABLE 4

Values	of	the	parameters	a, b, c (Å)	and	unit	cell	volume	$V(Å^3)$	as	a	function	of
tempera	atur	e											

T (K)	a	Ь	с	V
293	10.723	7.534	7.615	615.23
500	10.740	7.547	7.624	617.95
770	10.774	7.565	7.604	619.74
1020	10.780	7.589	7.649	625.76
1170	10.773	7.529	7.619	618.01
1270	10.807	7.521	7.620	619.36
1370	10.843	7.538	7.529	620.81

for Sm_3NbO_7 as a function of temperature; these values have been determined by the XPA method. The data obtained provide evidence that near the phase transition temperature the parameters c and b of the rhombic crystal cell undergo a change which leads to the cell decreasing in volume. The cubic dilatation results obtained for SM_3NbO_7 by the high temperature XPA method coincide with the dilatometric analysis data within the experimental error.

To ascertain crystallochemical features of the phase transformations in isostructural La, Pr, Nd and Gd niobates, we made, as an example, an X-ray structure analysis of Nd₃NbO₇ single crystals at 293 and 573 K.

TABLE 5

Positional parameters of atoms in the Nd₃NbO₇ single crystal at 293 K

Atom	X	Y	Z	
Nd ₁	0.000	0.000	0.000	
Nd ₂	0.2268(2)	0.2963(3)	0.250	
Nb	0.000	0.500	0.000	
O ₁	0.127(3)	0.317(4)	-0.041(4)	
O_2	0.131(3)	0.026(5)	0.250	
O ₃	0.000	0.427(8)	0.250	

TABLE 6

Interatomic distances d (Å) in the crystal structure of Nd₃NbO₇ at 293 K

Bond	d	Bond	d	
Nd ₁ -O ₁	4 × 2.78(3)	Nd-O ₂	2.32(4)	
Nd-O ₂	$4 \times 2.39(2)$	$Nd_2 - O_3$	2.66(2)	
Nd-O,	$2 \times 2.47(3)$	Nb-O	4×198(3)	
·	$2 \times 2.41(3)$	Nb-O ₃	$2 \times 1.98(2)$	
$Nd_2 - O_2$	2.29(4)	2		

Fig. 4. Crystal structure of Nd₃NbO₇ at 293 K.

Table 5 gives positional parameters of the atoms in a Nd₃NbO₇ single crystal at 293 K; space group Cmcm, d = 10.904(2); b = 7.516(2); c = 7.626(2) Å; R = 0.08. The interatomic distances are given in Table 6.

As can be seen from Fig. 4, the coordination polyhedra for the atoms are an octahedron for Nb, a tetragonal prism for Nd₁ and a heptahedron for Nd₂. Joining along the common edges, the Nd₁ polyhedra form chains along the *c* axis, and these chains, in turn, are bound up with the Nb polyhedra into layers on the (011) plane. The layers formed by the coordination polyhedra of Nd₁ and Nb are bound into the common framework of the crystal structure through Nd₂ heptahedra. As X-ray structural investigations at 573 K showed, the type of crystal structure did not change as a result of the phase transition (a = 10.926(2); b = 7.535(2); c = 7.650(2) Å, R = 0.07). An insignificant variation of the distances was observed in the coordination polyhedra of Nd and Nb, and was caused by the distortion of these polyhedra.

CONCLUSIONS

By invoking methods of high temperature ceramic synthesis from the solution in the melt, we have produced polycrystalline and single-crystalline single-phase niobate specimens of composition R_3NbO_7 (R = Y, La-Lu). Using XPA data, we have defined more exactly the unit cell parameters for these niobates. A study has been made of the heat capacity and thermal dilatation at high temperatures. Some niobates have been found to exhibit phase transformations. To define more exactly the nature of the transitions that occur, we have made X-ray analyses of the crystal structure of these compounds at different temperatures.

REFERENCES

- 1 V.P. Sirotinkin, A.A. Evdokimov and V.K. Trunov, Zh. Neorg. Khim., 27 (1982) 1648.
- 2 A.N. Klimenko and N.F. Men'shenina, Elektron. Tekh. Ser. 6: Materialy, 2 (1985) 79.
- 3 A.N. Klimenko, V.S. Sergeev and V.P. Sirotinkin, Izv. Akad. Nauk SSSR, Neorg. Mater., 24 (1988) 1052.